The structure of Witt-Burnside rings

Witt vectors, arithmetic, geometry, and topology

Lance Edward Miller

University of Utah

June 2, 2012
We’ve already seen and will many great talks on how ubiquitous and important Witt vectors are. This talk will focus on the algebraic properties of their generalizations.

- Review the Dress and Siebeneicher’s generalization involving profinite groups.
- Topology and ideals
- Prime ideals
Introduction Generalized Witt Vectors (Non)-Finite generation and topology Prime Ideals

Review of p-typical Witt Vectors

In $\mathbf{W}(A) = \{(a_0, a_1, \ldots) : a_i \in A\}$, the ring operations are

$$(a_0, a_1, \ldots) + (b_0, b_1, \ldots) = (s_0(a_0; b_0), s_1(a_0, a_1; b_0, b_1), \ldots),$$

$$(a_0, a_1, \ldots) \cdot (b_0, b_1, \ldots) = (m_0(a_0; b_0), m_1(a_0, a_1; b_0, b_1), \ldots),$$

where the polynomials s_i and m_i are defined via Witt polynomials

$$W_n(x_0, \ldots, x_n) = \sum_{i=0}^{n} p^i x_i^{p^{n-i}} = x_0^{p^n} + px_1^{p^{n-1}} + \cdots + p^n x_n$$
Review of p-typical Witt Vectors

In $W(A) = \{(a_0, a_1, \ldots) : a_i \in A\}$, the ring operations are

$$(a_0, a_1, \ldots) + (b_0, b_1, \ldots) = (s_0(a_0; b_0), s_1(a_0, a_1; b_0, b_1), \ldots),$$

$$(a_0, a_1, \ldots) \cdot (b_0, b_1, \ldots) = (m_0(a_0; b_0), m_1(a_0, a_1; b_0, b_1), \ldots),$$

where the polynomials s_i and m_i are defined via Witt polynomials

$$W_n(x_0, \ldots, x_n) = \sum_{i=0}^{n} p^i x_i^{p^{n-i}} = x_0^{p^n} + px_1^{p^{n-1}} + \cdots + p^n x_n$$

by solving for $s = (s_0, s_1, \ldots)$ and $m = (m_0, m_1, \ldots)$ in equations

$$W_n(x) + W_n(y) = W_n(s), \quad W_n(x) W_n(y) = W_n(m)$$

for all $n \geq 0$. The s_i's and m_i's easily have $\mathbb{Z}[1/p]$-coefficients, but in fact have \mathbb{Z}-coefficients (Witt).
Generalized Witt Vectors using Profinite Groups

We’ve already seen a description of the Dress/Siebeneicher generalization of Witt vectors.
We’ve already seen a description of the Dress/Siebeneicher generalization of Witt vectors.
The basic construction begins with a family of Witt-like polynomials associated to any \textit{profinite group} G (e.g., \mathbb{Z}_p as additive group, infinite Galois groups, etc.).
Generalized Witt Vectors using Profinite Groups

We’ve already seen a description of the Dress/Siebeneicher generalization of Witt vectors. The basic construction begins with a family of Witt-like polynomials associated to any **profinite group** G (e.g., \mathbb{Z}_p as additive group, infinite Galois groups, etc.).

The natural **indices** of the variables for these polynomials are the **discrete transitive** G-sets up to G-set isomorphism. Concretely these are coset spaces G/H with **open** H (up to conjugation) and are called the **frame of** G.
We’ve already seen a description of the Dress/Siebeneicher generalization of Witt vectors.
The basic construction begins with a family of Witt-like polynomials associated to any profinite group G (e.g., \mathbb{Z}_p as additive group, infinite Galois groups, etc.).

The natural indices of the variables for these polynomials are the discrete transitive G-sets up to G-set isomorphism. Concretely these are coset spaces G/H with open H (up to conjugation) and are called the frame of G.

Example. $G = \mathbb{Z}_p$. The discrete transitive G-sets are $\mathbb{Z}_p/p^n\mathbb{Z}_p$ for $n \geq 0$. The frame of \mathbb{Z}_p is like $\mathbb{N} = \{0, 1, 2, \ldots \}$ or $\{1, p, p^2, \ldots \}$. The variables x_0, x_1, \ldots in the classical Witt polynomials are indexed by \mathbb{N}.
There is a natural **partial ordering** on the frame of G: say $U \leq T$ when there is a G-map $T \to U$ (concretely, $G/H \leq G/K$ when $K \subset gHg^{-1}$ for some $g \in G$). The minimal point is $0 = G/G$.

Example. $G = \mathbb{Z}/p$. We have $\mathbb{Z}/p/\mathbb{Z}/p^n \leq \mathbb{Z}/p/\mathbb{Z}/p^m$ when $n \leq m$, so even as a partially ordered set the frame of \mathbb{Z}/p corresponds to $\mathbb{N} = \{0, 1, 2, \ldots\}$ or to $\{1, p, p^2, \ldots\}$ (with the latter ordered by divisibility).
The Frame of a Profinite Group

There is a natural partial ordering on the frame of G: say $U \leq T$ when there is a G-map $T \to U$ (concretely, $G/H \leq G/K$ when $K \subseteq gHg^{-1}$ for some $g \in G$). The minimal point is $0 = G/G$.

Example. $G = \mathbb{Z}_p$. We have $\mathbb{Z}_p/p^n\mathbb{Z}_p \leq \mathbb{Z}_p/p^m\mathbb{Z}_p$ when $n \leq m$, so even as a partially ordered set the frame of \mathbb{Z}_p corresponds to $\mathbb{N} = \{0, 1, 2, \ldots\}$ or to $\{1, p, p^2, \ldots\}$ (With the latter ordered by divisibility).
The Frame of a Profinite Group

There is a natural partial ordering on the frame of G: say $U \leq T$ when there is a G-map $T \rightarrow U$ (concretely, $G/H \leq G/K$ when $K \subset gHg^{-1}$ for some $g \in G$). The minimal point is $0 = G/G$.

Example. $G = \mathbb{Z}_p$. We have $\mathbb{Z}_p/p^n\mathbb{Z}_p \leq \mathbb{Z}_p/p^m\mathbb{Z}_p$ when $n \leq m$, so even as a partially ordered set the frame of \mathbb{Z}_p corresponds to $\mathbb{N} = \{0, 1, 2, \ldots \}$ or to $\{1, p, p^2, \ldots \}$ (With the latter ordered by divisibility).

It will be helpful to have a picture of the frame of G as a graph using the partial ordering. Here is the frame of $G = \mathbb{Z}_2$.

```
G/G  G/2G  G/4G  G/8G  G/16G  G/32G  G/64G
```

```
The Frame of a Profinite Group

There is a natural partial ordering on the frame of $G$: say $U \leq T$ when there is a $G$-map $T \to U$ (concretely, $G/H \leq G/K$ when $K \subset gHg^{-1}$ for some $g \in G$). The minimal point is $0 = G/G$.

Example. $G = \mathbb{Z}_p$. We have $\mathbb{Z}_p/p^n\mathbb{Z}_p \leq \mathbb{Z}_p/p^m\mathbb{Z}_p$ when $n \leq m$, so even as a partially ordered set the frame of $\mathbb{Z}_p$ corresponds to $\mathbb{N} = \{0, 1, 2, \ldots \}$ or to $\{1, p, p^2, \ldots \}$ (With the latter ordered by divisibility).

It will be helpful to have a picture of the frame of $G$ as a graph using the partial ordering. Here is the frame of $G = \mathbb{Z}_2$.

```
G/G G/2G G/4G G/8G G/16G G/32G G/64G
```

More generally, the frames of $\mathbb{Z}_p$ or $\mathbb{Z}/p^n\mathbb{Z}$ are totally ordered, but the frame of $\mathbb{Z}_p^2$ is not totally ordered...
The frame of $G = \mathbb{Z}_2^2$ is much more intricate than for $\mathbb{Z}_2$!

Here $H = \mathbb{Z}_2^2(1_0) + \mathbb{Z}_2^2(0_2)$ and $K = \mathbb{Z}_2^2(1_0) + \mathbb{Z}_2^2(0_4)$. Since $K \subset H$, we have $G/H \leq G/K$. 
Visualizing the Frame of $\mathbb{Z}_2^2$

The frame of $G = \mathbb{Z}_2^2$ is much more intricate than for $\mathbb{Z}_2$!

Here $H = \mathbb{Z}_2^2(\frac{1}{0}) + \mathbb{Z}_2^2(\frac{0}{2})$ and $K = \mathbb{Z}_2^2(\frac{1}{0}) + \mathbb{Z}_2^2(\frac{0}{4})$. Since $K \subset H$, we have $G/H \leq G/K$.

Note: For pro-$p$ $G$ besides $\mathbb{Z}_p$ and $\mathbb{Z}/p^n\mathbb{Z}$, there is more than one (open) subgroup of index $p$, so multiple vertices connect to the trivial $G$-set $G/G$. This is a crucial aspect which accounts for the change of structure from $d = 1$ to $d > 1$. 
Defining Generalized Witt Polynomials

For any discrete transitive $G$-set $T$, define the $T$-th Witt polynomial in $\mathbb{Q}[\ldots, x_T, \ldots] = \mathbb{Q}[x]$ to be

$$W_T(x) = \sum_{U \leq T} \#\text{Map}_G(T, U)x_U^{#T/#U} = x_0^{#T} + \cdots + #\text{Aut}_G(T)x_T.$$
Defining Generalized Witt Polynomials

For any discrete transitive $G$-set $T$, define the $T$-th Witt polynomial in $\mathbb{Q}[\ldots, x_T, \ldots] = \mathbb{Q}[x]$ to be

$$W_T(x) = \sum_{U \leq T} \#\text{Map}_G(T, U)x_U^{\#T/\#U} = x_0^{\#T} + \cdots + \#\text{Aut}_G(T)x_T.$$ 

This is linear in its last variable $x_T$, as in the classical case.
Defining Generalized Witt Polynomials

For any discrete transitive $G$-set $T$, define the $T$-th Witt polynomial in $\mathbb{Q}[\ldots, x_T, \ldots] = \mathbb{Q}[x]$ to be

$$W_T(x) = \sum_{U \leq T} \#\text{Map}_G(T, U)x_U^{\#T/\#U} = x_0^T + \cdots + \#\text{Aut}_G(T)x_T.$$  

This is linear in its last variable $x_T$, as in the classical case.

Therefore given independent variables $x = (x_T)$ and $y = (y_T)$, in $\mathbb{Q}[x, y]$ there are unique polynomial sequences $s = (s_T(x, y))$ and $m = (m_T(x, y))$ satisfying

$$W_T(x) + W_T(y) = W_T(s), \quad W_T(x)W_T(y) = W_T(m)$$

for all discrete transitive $G$-sets $T$. 

These polynomials $s_T$ and $m_T$ were defined by Dress and Siebeneicher (1988), who showed they have $\mathbb{Z}$-coefficients.
Defining Generalized Witt Polynomials

For any discrete transitive $G$-set $T$, define the $T$-th Witt polynomial in $\mathbb{Q}[\ldots, x_T, \ldots] = \mathbb{Q}[x]$ to be

$$W_T(x) = \sum_{U \leq T} \#\text{Map}_G(T, U)x_U^{#T/#U} = x_0^{#T} + \cdots + \#\text{Aut}_G(T)x_T.$$ 

This is linear in its last variable $x_T$, as in the classical case.

Therefore given independent variables $x = (x_T)$ and $y = (y_T)$, in $\mathbb{Q}[x, y]$ there are unique polynomial sequences $s = (s_T(x, y))$ and $m = (m_T(x, y))$ satisfying

$$W_T(x) + W_T(y) = W_T(s), \quad W_T(x)W_T(y) = W_T(m)$$

for all discrete transitive $G$-sets $T$.

These polynomials $s_T$ and $m_T$ were defined by Dress and Siebeneicher (1988), who showed they have $\mathbb{Z}$-coefficients.
Defining Generalized Witt Vectors

\[ W_T(x) = \sum_{U \leq T} \#\text{Map}_G(T, U)x_U^{#T/#U} = x_0^{#T} + \cdots + \#\text{Aut}_G(T)x_T, \]

\[ W_T(x) + W_T(y) = W_T(s), \quad W_T(x)W_T(y) = W_T(m). \]
Defining Generalized Witt Vectors

\[ W_T(x) = \sum_{U \leq T} \#\text{Map}_G(T, U)x_U^{\#T/\#U} = x_0^{\#T} + \cdots + \#\text{Aut}_G(T)x_T, \]

\[ W_T(x) + W_T(y) = W_T(s), \quad W_T(x)W_T(y) = W_T(m). \]

Dress and Siebeneicher defined the ring of generalized Witt vectors \( W_G(A) \) for any commutative ring \( A \) as the \( A \)-valued sequences \( a = (a_T) \) indexed by the frame of \( G \), with operations

\[ a + b = (s_T(a, b)), \quad ab = (m_T(a, b)). \]

This works for all \( A \) since the \( s_T \)'s and \( m_T \)'s have \( \mathbb{Z} \)-coefficients.
Defining Generalized Witt Vectors

\[ W_T(x) = \sum_{U \leq T} \#\text{Map}_G(T, U)x_U^{\#T/\#U} = x_0^T + \cdots + \#\text{Aut}_G(T)x_T, \]

\[ W_T(x) + W_T(y) = W_T(s), \quad W_T(x)W_T(y) = W_T(m). \]

Dress and Siebeneicher defined the ring of generalized Witt vectors \( W_G(A) \) for any commutative ring \( A \) as the \( A \)-valued sequences \( a = (a_T) \) indexed by the frame of \( G \), with operations

\[ a + b = (s_T(a, b)), \quad ab = (m_T(a, b)). \]

This works for all \( A \) since the \( s_T \)'s and \( m_T \)'s have \( \mathbb{Z} \)-coefficients. The ring \( W(A) \) is \( W_{\mathbb{Z}_p}(A) \) (here \( \mathbb{Z}_p \) is an additive group).
Defining Generalized Witt Vectors

\[ W_T(x) = \sum_{U \leq T} \# \text{Map}_G(T, U)x_U^{#T/#U} = x_0^{#T} + \cdots + \# \text{Aut}_G(T)x_T, \]

\[ W_T(x) + W_T(y) = W_T(s), \quad W_T(x)W_T(y) = W_T(m). \]

Dress and Siebeneicher defined the ring of generalized Witt vectors \( W_G(A) \) for any commutative ring \( A \) as the \( A \)-valued sequences \( a = (a_T) \) indexed by the frame of \( G \), with operations

\[ a + b = (s_T(a, b)), \quad ab = (m_T(a, b)). \]

This works for all \( A \) since the \( s_T \)'s and \( m_T \)'s have \( \mathbb{Z} \)-coefficients. The ring \( W(A) \) is \( W_{\mathbb{Z}_p}(A) \) (here \( \mathbb{Z}_p \) is an additive group). So \( W_{\mathbb{Z}_p}(\mathbb{F}_p) = \mathbb{Z}_p \), with \( \mathbb{Z}_p \) a group on left, ring on right.
The Problem with Witt Vectors

Witt vector ring operations are a **nightmare** to work with explicitly.
The Problem with Witt Vectors

Witt vector ring operations are a nightmare to work with explicitly.

The formulas do not fit in the head of a civilized mathematician of the 21st century. Hendrik Lenstra
When $k$ is perfect of characteristic $p$, $\mathbf{W}(k) = \mathbf{W}_{Z_p}(k)$ is a DVR with maximal ideal $(p)$. It is complete with respect to the topology defined by $(p)$. 
When $k$ is perfect of characteristic $p$, $\mathbf{W}(k) = \mathbf{W}_{Z_p}(k)$ is a DVR with maximal ideal $(p)$. It is complete with respect to the topology defined by $(p)$.

In contrast, for $G \not\cong Z_p$, there can be many topologies for $\mathbf{W}_G(k)$. 
Structures and topologies

When $k$ is perfect of characteristic $p$, $\mathbf{W}(k) = \mathbf{W}_{\mathbb{Z}_p}(k)$ is a DVR with maximal ideal $(p)$. It is complete with respect to the topology defined by $(p)$.

In contrast, for $G \ncong \mathbb{Z}_p$, there can be many topologies for $\mathbf{W}_G(k)$.

For open normal subgroups $N \subset N' \subset G$, there are natural projection maps $\mathbf{W}_{G/N}(k) \to \mathbf{W}_{G/N'}(k)$ forming a projective system. Giving each factor $\mathbf{W}_{G/N}(k)$ the discrete topology induces a topology on $\mathbf{W}_G(k) \cong \varprojlim_N \mathbf{W}_{G/N}(k)$ where $N$ ranges over the open normal subgroups of $G$. We refer to this as the profinite topology and $\mathbf{W}_G(k)$ is complete in it.
A new topology?

For classic Witt vectors, the profinite topology agrees with the topology induced by the maximal ideal \( m \). For perfect \( k \), one has

\[
\mathbf{a} \in m^n = (p^n) \text{ if and only if } a_i = 0 \text{ for } i < n.
\]
A new topology?

For classic Witt vectors, the profinite topology agrees with the topology induced by the maximal ideal \( m \). For perfect \( k \), one has

\[
\mathbf{a} \in m^n = (p^n) \text{ if and only if } a_i = 0 \text{ for } i < n.
\]

For any profinite group \( G \), one is inclined to consider for any profinite \( G \) the ideals

\[
I_n(G, k) = \{ \mathbf{a} \in \mathbf{W}_G(k): a_T = 0 \text{ for } \# T < n \}.
\]
A new topology?

For classic Witt vectors, the profinite topology agrees with the topology induced by the maximal ideal $m$. For perfect $k$, one has

$$a \in m^n = (p^n) \text{ if and only if } a_i = 0 \text{ for } i < n.$$  

For any profinite group $G$, one is inclined to consider for any profinite $G$ the ideals

$$I_n(G, k) = \{a \in \mathcal{W}_G(k) : a_T = 0 \text{ for } \# T < n\}.$$  

Obviously

$$\mathcal{W}_G(k) = I_1(G, k) \supset I_2(G, k) \supset \cdots \supset I_n(G, k) \supset I_{n+1}(G, k) \supset \cdots,$$

and $\bigcap I_n(G, k) = \{0\}$. 

A new topology?

For classic Witt vectors, the profinite topology agrees with the topology induced by the maximal ideal $m$. For perfect $k$, one has

$$a \in m^n = (p^n) \text{ if and only if } a_i = 0 \text{ for } i < n.$$  

For any profinite group $G$, one is inclined to consider for any profinite $G$ the ideals

$$I_n(G, k) = \{ a \in W_G(k) : a_T = 0 \text{ for } \# T < n \}.$$  

Obviously

$$W_G(k) = I_1(G, k) \supset I_2(G, k) \supset \cdots \supset I_n(G, k) \supset I_{n+1}(G, k) \supset \cdots,$$

and $\bigcap I_n(G, k) = \{0\}$. So these ideal define a fundamental system of neighborhoods of $0$, giving a Hausdorff topology on $W_G(k)$ called the *initial vanishing topology*. It is easy to see that $W_G(k)$ is complete with respect to this topology.
Example of $I_n(G, k)$ for $G = \mathbb{Z}_2^2$

One can easily visualize the ideals $I_n(G, k)$. For example when $G = \mathbb{Z}_2^2$:  

![Diagram of $I_2(G, k)$]
Example of $I_n(G, k)$ for $G = \mathbb{Z}_2^2$

One can easily visualize the ideals $I_n(G, k)$. For example when $G = \mathbb{Z}_2^2$:
Example of $I_n(G, k)$ for $G = \mathbb{Z}_2$:

One can easily visualize the ideals $I_n(G, k)$. For example when $G = \mathbb{Z}_2^2$:

$$
\begin{array}{c|cccc}
\text{Size} & 1 & 2 & 4 & 8 \\
I_8(G, k) & & & & \\
\end{array}
$$
Comparing topologies

How do these topologies relate?

Theorem
Let $G$ be a topologically finitely generated profinite group. The profinite and initial vanishing topologies agree.

The proof compares the families of ideals $\{I_n\}_{n \geq 1}$ and $\{K_N\}_{N \text{ open}}$ where $K_N$ is the kernel of the natural projection map $\text{Proj}_G \ G / N : \mathbb{W}_G(k) \to \mathbb{W}_G / N(k)$ defined by $a \mapsto (a^T) T \in F(G / N)$.

The key fact is that for topologically finitely generated profinite groups, there are finitely many open subgroups of each index. The converse also holds when $G$ is pro-$p$. 
Comparing topologies

How do these topologies relate?

Theorem

Let $G$ be a topologically finitely generated profinite group. The profinite and initial vanishing topologies agree.
Comparing topologies

How do these topologies relate?

**Theorem**

Let $G$ be a topologically finitely generated profinite group. The profinite and initial vanishing topologies agree.

The proof compares the families of ideals $\{I_n\}_{n \geq 1}$ and $\{K_N\}_{N \text{ open}}$ where $K_N$ is the kernel of the natural projection map $\text{Proj}_{G/N}^G: \mathbf{W}_G(k) \to \mathbf{W}_{G/N}(k)$ defined by $a \mapsto (a_T)_{T \in \mathcal{F}(G/N)}$. 
Comparing topologies

How do these topologies relate?

**Theorem**

Let $G$ be a topologically finitely generated profinite group. The profinite and initial vanishing topologies agree.

The proof compares the families of ideals $\{I_n\}_{n \geq 1}$ and $\{K_N\}_{N \text{ open}}$ where $K_N$ is the kernel of the natural projection map $\text{Proj}^G_{G/N} : \mathbf{W}_G(k) \to \mathbf{W}_{G/N}(k)$ defined by $a \mapsto (a_T)_{T \in \mathcal{F}(G/N)}$. The key fact is that for topologically finitely generated profinite groups, there are finitely many open subgroups of each index.
Comparing topologies

How do these topologies relate?

**Theorem**

*Let G be a topologically finitely generated profinite group. The profinite and initial vanishing topologies agree.*

The proof compares the families of ideals \( \{I_n\}_{n \geq 1} \) and \( \{K_N\}_{N \text{ open}} \) where \( K_N \) is the kernel of the natural projection map \( \text{Proj}^G_{G/N} : \mathbf{W}_G(k) \to \mathbf{W}_{G/N}(k) \) defined by \( a \mapsto (a_T)_{T \in \mathcal{F}(G/N)} \). The key fact is that for topologically finitely generated profinite groups, there are finitely many open subgroups of each index.

The converse also holds when \( G \) is pro-\( p \).
It is natural to ask if \( I_m(G, k)I_n(G, k) \subset I_{m+n}(G, k) \) ?. This is easy to show if \( G \) is abelian.
It is natural to ask if \( I_m(G, k)I_n(G, k) \subseteq I_{m+n}(G, k) \) ?. This is easy to show if \( G \) is abelian.

When \( G \) is (not necessarily) abelian, and pro-\( p \) a similar condition that can be shown to always hold. In particular for \( G \) pro-\( p \):

\[
I_p(G, k)I_{p^n}(G, k) \subseteq I_{p^{n+1}}(G, k).
\]
It is natural to ask if \( l_m(G, k)l_n(G, k) \subset l_{m+n}(G, k) \)? This is easy to show if \( G \) is abelian.

When \( G \) is (not necessarily) abelian, and pro-\( p \) a similar condition that can be shown to always hold. In particular for \( G \) pro-\( p \):

\[
l_p(G, k)l_{p^n}(G, k) \subset l_{p^{n+1}}(G, k).
\]

So, \( l_p(G, k)^m \subset l_{p^m}(G, k) \) for any \( m \geq 1 \). This gives special importance to \( m := l_p(G, k) \).
The Maximal Ideal in $\mathbf{W}_G(k)$

Like the classical case, we have

**Theorem (M)**

*When $G$ an infinite pro-$p$ group and $k$ is a field of characteristic $p$, $\mathbf{W}_G(k)$ is a local ring with maximal ideal $m = I_p(G, k) = \{(0, *, *, \ldots)\}$.*
The Maximal Ideal in $\mathbf{W}_G(k)$

Like the classical case, we have

**Theorem (M)**

*When $G$ an infinite pro-$p$ group and $k$ is a field of characteristic $p$, $\mathbf{W}_G(k)$ is a local ring with maximal ideal $m = I_p(G, k) = \{(0, *, *, \ldots)\}$."

Indeed, given a Witt vector $a = (a_0, *, *, \ldots)$ with $a_0 \neq 0$, we can multiply it by the unit $(a_0^{-1}, 0, 0, \ldots)$ to assume $a_0 = 1$. Then our Witt vector is

$$(1, *, *, \ldots) = (1, 0, 0, \ldots) + (0, *, *, \ldots).$$
The Maximal Ideal in $\mathbf{W}_G(k)$

Like the classical case, we have

**Theorem (M)**

*When $G$ an infinite pro-$p$ group and $k$ is a field of characteristic $p$, $\mathbf{W}_G(k)$ is a local ring with maximal ideal $m = I_p(G, k) = \{(0, *, *, \ldots)\}$.***

Indeed, given a Witt vector $a = (a_0, *, *, \ldots)$ with $a_0 \neq 0$, we can multiply it by the unit $(a_0^{-1}, 0, 0, \ldots)$ to assume $a_0 = 1$. Then our Witt vector is

$$(1, *, *, \ldots) = (1, 0, 0, \ldots) + (0, *, *, \ldots).$$

Powers of the second term tend to 0 in the initial vanishing topology on $\mathbf{W}_G(k)$, so we can form an inverse using geometric series.
Strutures and topologies

So when $G$ is pro-$p$, there are four topologies:

1. the $(p)$-adic topology,
2. the $m$-adic topology,
3. the initial vanishing topology, and
4. the profinite topology.
So when $G$ is pro-$p$, there are four topologies:

1. the $(p)$-adic topology,
2. the $m$-adic topology,
3. the initial vanishing topology, and
4. the profinite topology.

We have answered how (3) and (4) relate. Furthermore, the inclusion of ideals $(p)^n \subset m^n \subset I_{p^n}(G, k)$ induce comparisons between these topologies. We will see that they will differ in general because these contains cannot be reversed.
So when $G$ is pro-$p$, there are four topologies:

1. the $(p)$-adic topology,
2. the $\mathfrak{m}$-adic topology,
3. the initial vanishing topology, and
4. the profinite topology.

We have answered how (3) and (4) relate. Furthermore, the inclusion of ideals $(p)^n \subset \mathfrak{m}^n \subset I_p^n(G, k)$ induce comparisons between these topologies. We will see that they will differ in general because these contains cannot be reversed.

To see this we examine properties of elements of $(p)$ and $\mathfrak{m}$ in $W_G(k)$ for $G = \mathbb{Z}_p^d$ for $d > 1$. 
An element of $\mathcal{W}_{\mathbb{Z}_2} (\mathbb{F}_2) = \mathbb{Z}_2$ is a 0 or 1 at each vertex. Here is what 1 and 2 look like in this ring.

```
1 0 0 0 0 0 0 0 0
 ●●●●●●●●●●●●

0 1 0 0 0 0 0 0 0
 ●●●●●●●●●●●●
```
Visualizing Elements in $W_{\mathbb{Z}^2}(\mathbb{F}_2)$

An element of $W_{\mathbb{Z}^2}(\mathbb{F}_2)$ is a 0 or 1 at each vertex. Here is the representation of 1 in this ring.
Visualizing Elements in $\mathbf{W}_{\mathbb{Z}_2^2}(\mathbb{F}_2)$

Here is 2 in $\mathbf{W}_{\mathbb{Z}_2^2}(\mathbb{F}_2)$. It is quite different from the classical case ($G = \mathbb{Z}_2$): infinitely many nonzero coordinates.
Visualizing Elements in $\mathbf{W}_{Z^2_p}(\mathbf{F}_p)$

However for odd $p$, the element $p$ in $\mathbf{W}_{Z^2_p}(\mathbf{F}_p)$ has finite support. For example, when $p = 3$: 
Multiplication by $p$

If $G$ is infinite pro-$p$ and not $\mathbb{Z}_p$, the multiple discrete transitive $G$-sets of size $p$ – the vertices linked to $G/G$ in the frame of $G$ – lead to zero divisors in $W_G(k)$: it is not a domain. (This construction is essentially in the work of Dress and Siebeneicher.)
Multiplication by $p$

If $G$ is infinite pro-$p$ and not $\mathbb{Z}_p$, the multiple discrete transitive $G$-sets of size $p$ – the vertices linked to $G/G$ in the frame of $G$ – lead to zero divisors in $\mathbf{W}_G(k)$: it is not a domain. (This construction is essentially in the work of Dress and Siebeneicher.)

In $\mathbf{W}(k)$, $pa = (0, a_0^p, *, *, \ldots)$. An important effect of multiple $G$-sets of size $p$ is that $pa = (0, a_0^p, a_0^p, \ldots, a_0^p, *, *, \ldots)$, where $a_0^p$ occurs in all coordinates indexed by $T$ with size $p$: we have repeated coordinates.
Multiplication by $p$

If $G$ is infinite pro-$p$ and not $\mathbb{Z}_p$, the multiple discrete transitive $G$-sets of size $p$ – the vertices linked to $G/G$ in the frame of $G$ – lead to zero divisors in $\mathbf{W}_G(k)$: it is not a domain. (This construction is essentially in the work of Dress and Siebeneicher.)

In $\mathbf{W}(k)$, $pa = (0, a_0^p, *, *, \ldots)$. An important effect of multiple $G$-sets of size $p$ is that $pa = (0, a_0^p, a_0^p, \ldots, a_0^p, *, *, \ldots)$, where $a_0^p$ occurs in all coordinates indexed by $T$ with size $p$: we have repeated coordinates.

When $k$ is perfect of characteristic $p$, $\mathbf{W}(k) = \mathbf{W}_{\mathbb{Z}_p}(k)$ is a DVR with maximal ideal $(p)$. In $\mathbf{W}_G(k)$ with $G \not\cong \mathbb{Z}_p$, $(p) \subsetneq m$ from the repetitions.
**Multiplication by $p$**

If $G$ is infinite pro-$p$ and not $\mathbb{Z}_p$, the multiple discrete transitive $G$-sets of size $p$ – the vertices linked to $G/G$ in the frame of $G$ – lead to zero divisors in $\mathbf{W}_G(k)$: it is not a domain. (This construction is essentially in the work of Dress and Siebeneicher.)

In $\mathbf{W}(k)$, $pa = (0, a_0^p, *, *, \ldots)$. An important effect of multiple $G$-sets of size $p$ is that $pa = (0, a_0^p, a_0^p, \ldots, a_0^p, *, *, \ldots)$, where $a_0^p$ occurs in all coordinates indexed by $T$ with size $p$: we have repeated coordinates.

When $k$ is perfect of characteristic $p$, $\mathbf{W}(k) = \mathbf{W}_{\mathbb{Z}_p}(k)$ is a DVR with maximal ideal $(p)$. In $\mathbf{W}_G(k)$ with $G \not\cong \mathbb{Z}_p$, $(p) \subsetneq \mathfrak{m}$ from the repetitions. It wouldn’t be a surprise that $\mathfrak{m}$ is nonprincipal: $k[[x_1]]$ is a PID but $k[[x_1, x_2, \ldots, x_n]]$ is not if $n > 1$. 
If $G$ is a topologically finitely generated pro-$p$ group, surely $W_G(k)$ is Noetherian with maximal ideal $m$ generated by Witt vectors with a 1 in a coordinate indexed by $T$'s with size $p$. 
The Maximal Ideal in $\mathcal{W}_{Z_p^d}(k)$

If $G$ is a topologically finitely generated pro-$p$ group, surely $\mathcal{W}_G(k)$ is Noetherian with maximal ideal $m$ generated by Witt vectors with a 1 in a coordinate indexed by $T$'s with size $p$. This is wrong!
The Maximal Ideal in $W_{\mathbb{Z}^d_p}(k)$

If $G$ is a topologically finitely generated pro-$p$ group, surely $W_G(k)$ is Noetherian with maximal ideal $m$ generated by Witt vectors with a 1 in a coordinate indexed by $T$'s with size $p$. This is wrong!

**Theorem (M)**

If $G = \mathbb{Z}^d_p$ for $d \geq 2$ and $k$ is any field of characteristic $p$, the maximal ideal $m$ of $W_G(k)$ is not finitely generated. In fact, $\dim_k(m/m^2) = \infty$. 
The Maximal Ideal in $W_{\mathbb{Z}_p^d}(k)$

If $G$ is a topologically finitely generated pro-$p$ group, surely $W_G(k)$ is Noetherian with maximal ideal $m$ generated by Witt vectors with a 1 in a coordinate indexed by $T$'s with size $p$. This is wrong!

**Theorem (M)**

If $G = \mathbb{Z}_p^d$ for $d \geq 2$ and $k$ is any field of characteristic $p$, the maximal ideal $m$ of $W_G(k)$ is not finitely generated. In fact, $\dim_k(m/m^2) = \infty$.

To prove this one notes all elements in $m^2$ have infinitely many repetitions in their coordinates. For each $n \geq 1$, there are $T_n$ and $T'_n$ in the frame of $\mathbb{Z}_p^d$ with size $p^n$ such that any element of $m^2$ has the same $T_n$ and $T'_n$ coordinates (need $d \geq 2$).
The Maximal Ideal in $W_{\mathbb{Z}_p}(k)$

**Theorem (M)**

If $G = \mathbb{Z}_p^d$ for $d \geq 2$ and $k$ is any field of characteristic $p$, the maximal ideal $m$ of $W_G(k)$ is not finitely generated. In fact, $\dim_k(m/m^2) = \infty$.

Set $a_n = (0, 0, \ldots, 0, 1, 0, \ldots, 0)$ for $n \geq 1$, where the single 1 is in the $T_n$-slot. Then $a_n \in m$ and $a_n \not\in m^2$ by looking at the $T_n$ and $T'_n$ coordinates (this needs $d \geq 2$; $a_n \in m^2$ if $d = 1$ and $n \geq 2$).
The Maximal Ideal in $\mathbf{W}_{\mathbb{Z}_p^d}(k)$

**Theorem (M)**

If $G = \mathbb{Z}_p^d$ for $d \geq 2$ and $k$ is any field of characteristic $p$, the maximal ideal $\mathfrak{m}$ of $\mathbf{W}_G(k)$ is not finitely generated. In fact, $\dim_k(\mathfrak{m}/\mathfrak{m}^2) = \infty$.

Set $\mathbf{a}_n = (0, 0, \ldots, 0, 1, 0, \ldots, 0)$ for $n \geq 1$, where the single 1 is in the $T_n$-slot. Then $\mathbf{a}_n \in \mathfrak{m}$ and $\mathbf{a}_n \notin \mathfrak{m}^2$ by looking at the $T_n$ and $T'_n$ coordinates (this needs $d \geq 2$; $\mathbf{a}_n \in \mathfrak{m}^2$ if $d = 1$ and $n \geq 2$).

One can show that $\mathbf{a}_1, \ldots, \mathbf{a}_n \in \mathfrak{m}/\mathfrak{m}^2$ are linearly independent over $k$. Since $n$ is arbitrary, this shows that $\mathfrak{m}$ is not finitely generated.
The Maximal Ideal in $\mathcal{W}_{d}(k)$

**Theorem (M)**

If $G = \mathbb{Z}_{p}^{d}$ for $d \geq 2$ and $k$ is any field of characteristic $p$, the maximal ideal $m$ of $\mathcal{W}_{G}(k)$ is not finitely generated. In fact, $\dim_{k}(m/m^{2}) = \infty$.

Another consequence of the repetitions in $m^{2}$ is that $m^{2}$ cannot contain $I_{pr}(\mathbb{Z}_{p}^{d}, k)$. Hence the $m$-adic topology and the initial vanishing topology differs.
Beyond Being non-Noetherian

If a ring is not Noetherian, it’s natural to ask if it is coherent.
Beyond Being non-Noetherian

If a ring is not Noetherian, it’s natural to ask if it is coherent. Coherent rings have finitely generated annihilator ideals.
Beyond Being non-Noetherian

If a ring is not Noetherian, it’s natural to ask if it is coherent. Coherent rings have finitely generated annihilator ideals.

**Theorem (M)**

\[ \text{When } p \neq 2, \mathbf{W}_{\mathbb{Z}_p^2}(k) \text{ is not coherent when } k \text{ is a field of char. } p. \]
Beyond Being non-Noetherian

If a ring is not Noetherian, it’s natural to ask if it is coherent. Coherent rings have finitely generated annihilator ideals.

Theorem (M)

When \( p \neq 2 \), \( W_{Z_p}^2(k) \) is not coherent when \( k \) is a field of char. \( p \).

Sketch of proof: There is a specific Witt vector whose annihilator ideal is studied.

If this ideal has \( r \) generators, for any \( n \geq 1 \) a computation in the ideal using Witt vector coordinates indexed by the special \( G \)-sets \( T_1, T'_1, \ldots, T_n, T'_n \) mentioned before leads to a surjective polynomial map \( k^r \rightarrow k^n \).
If a ring is not Noetherian, it’s natural to ask if it is coherent. Coherent rings have finitely generated annihilator ideals.

**Theorem (M)**

*When* $p \neq 2$, $W_{Z_p^2}(k)$ *is not coherent when* $k$ *is a field of char. $p$.*

Sketch of proof: There is a specific Witt vector whose annihilator ideal is studied.

If this ideal has $r$ generators, for any $n \geq 1$ a computation in the ideal using Witt vector coordinates indexed by the special $G$-sets $T_1, T'_1, \ldots, T_n, T'_n$ mentioned before leads to a surjective polynomial map $k^r \rightarrow k^n$.

Take $n > r$ to have a contradiction!
Prime Ideals in $W_{\mathbb{Z}_p^2}(k)$

The ring $W_G(k)$ can be non-Noetherian, not a domain, and not coherent. Does it have any basic positive properties?
Prime Ideals in $\mathbf{W}_{\mathbb{Z}_p^2}(k)$

The ring $\mathbf{W}_{\mathbb{Z}_p^2}(k)$ can be non-Noetherian, not a domain, and not coherent. Does it have any basic positive properties? Another “$p$-adic” ring which is non-Noetherian and not a domain is the continuous functions $\mathbb{Z}_p \rightarrow \mathbb{Q}_p$, which is a reduced ring.
Prime Ideals in $\mathcal{W}_{\mathbb{Z}_p^2}(k)$

The ring $\mathcal{W}_G(k)$ can be non-Noetherian, not a domain, and not coherent. Does it have any basic positive properties? Another “$p$-adic” ring which is non-Noetherian and not a domain is the continuous functions $\mathbb{Z}_p \to \mathbb{Q}_p$, which is a reduced ring.

Theorem (M)

*When $k$ is any field of characteristic $p$, $\mathcal{W}_{\mathbb{Z}_p^2}(k)$ is reduced.*
Prime Ideals in $\mathbf{W}_{\mathbb{Z}_p^2}(k)$

The ring $\mathbf{W}_G(k)$ can be non-Noetherian, not a domain, and not coherent. Does it have any basic positive properties? Another “$p$-adic” ring which is non-Noetherian and not a domain is the continuous functions $\mathbb{Z}_p \rightarrow \mathbb{Q}_p$, which is a reduced ring.

**Theorem (M)**

*When $k$ is any field of characteristic $p$, $\mathbf{W}_{\mathbb{Z}_p^2}(k)$ is reduced.*

Given nonzero $\mathbf{v}$ in $\mathbf{W}_{\mathbb{Z}_p^2}(k)$ we pick its “smallest” nonzero coordinate and find a predictable nonzero coordinate for powers of $\mathbf{v}$. This uses the combinatorial structure of the frame of $\mathbb{Z}_p^2$: the lowest part of it *forms a tree*. It is *not a tree* for $\mathbb{Z}_p^d$ when $d > 2$. 
Prime Ideals in $W_{\mathbb{Z}_p}(k)$

The ring $W_G(k)$ can be non-Noetherian, not a domain, and not coherent. Does it have any basic positive properties? Another “$p$-adic” ring which is non-Noetherian and not a domain is the continuous functions $\mathbb{Z}_p \to \mathbb{Q}_p$, which is a reduced ring.

Theorem (M)

*When $k$ is any field of characteristic $p$, $W_{\mathbb{Z}_p^2}(k)$ is reduced.*

Given nonzero $v$ in $W_{\mathbb{Z}_p^2}(k)$ we pick its “smallest” nonzero coordinate and find a predictable nonzero coordinate for powers of $v$. This uses the combinatorial structure of the frame of $\mathbb{Z}_p^2$: the lowest part of it forms a tree. It is not a tree for $\mathbb{Z}_p^d$ when $d > 2$.

Perhaps $W_{\mathbb{Z}_p^d}(k)$ is reduced for $d \geq 3$, but a new proof is needed.
Prime Ideals in $\mathbf{W}_{\mathbb{Z}_p}(k)$

Since $\mathbf{W}_{\mathbb{Z}_p}(k)$ is reduced, the intersection of its prime ideals is $\{0\}$. 
Prime Ideals in $W_{Z_p^2}(k)$

Since $W_{Z_p^2}(k)$ is reduced, the intersection of its prime ideals is $\{0\}$. Thus $W_{Z_p^2}(k)$ embeds into $\prod_P W_{Z_p^2}(k)/P$, a product of domains, via reduction mod $P$ for all $P$:

$$W_{Z_p^2}(k) \to \prod_P W_{Z_p^2}(k)/P$$

$$a \mapsto (a \mod P)_P$$
Prime Ideals in $\mathbb{W}_{\mathbb{Z}_p^2}(k)$

Since $\mathbb{W}_{\mathbb{Z}_p^2}(k)$ is reduced, the intersection of its prime ideals is $\{0\}$. Thus $\mathbb{W}_{\mathbb{Z}_p^2}(k)$ embeds into $\prod_P \mathbb{W}_{\mathbb{Z}_p^2}(k)/P$, a product of domains, via reduction mod $P$ for all $P$:

$$\mathbb{W}_{\mathbb{Z}_p^2}(k) \rightarrow \prod_P \mathbb{W}_{\mathbb{Z}_p^2}(k)/P$$

$$a \mapsto (a \mod P)_P$$

It would be nice if we could determine all the domains $\mathbb{W}_{\mathbb{Z}_p^2}(k)/P$ concretely and then determine how $\mathbb{W}_{\mathbb{Z}_p^2}(k)$ sits inside this product ring to get a more concrete idea of what $\mathbb{W}_{\mathbb{Z}_p^2}(k)$ “is”.
Prime Ideals in $\mathbf{W}_{\mathbb{Z}_p}(k)$

There is a natural family of prime ideals in $\mathbf{W}_{\mathbb{Z}_p}(k)$. In the diagram, we illustrate with $p = 2$. 

![Diagram showing levels and prime ideals in $\mathbf{W}_{\mathbb{Z}_p}(k)$]

The image is a domain, so the kernel is a prime ideal. Each path along the bottom gives a different prime ideal in $\mathbf{W}_{\mathbb{Z}_p}(k)$. Are these all the prime ideals (besides the maximal ideal)?
Prime Ideals in $\mathbf{W}_{\mathbb{Z}_p^2}(k)$

There is a natural family of prime ideals in $\mathbf{W}_{\mathbb{Z}_p^2}(k)$. In the diagram, we illustrate with $p = 2$. Choose a level 0 path $C$. Projecting onto these coordinates is a surjective homomorphism $\mathbf{W}_{\mathbb{Z}_p^2}(k) \to \mathbf{W}(k)$. 
There is a natural family of prime ideals in $\mathbf{W}_{\mathbb{Z}_p}(k)$. In the diagram, we illustrate with $p = 2$. Choose a level 0 path $C$. Projecting onto these coordinates is a surjective homomorphism $\mathbf{W}_{\mathbb{Z}_p}(k) \to \mathbf{W}(k)$. The image is a domain, so the kernel is a prime ideal $p_C$. 
Prime Ideals in $\mathbf{W}_{\mathbb{Z}_p^2}(k)$

There is a natural family of prime ideals in $\mathbf{W}_{\mathbb{Z}_p^2}(k)$. In the diagram, we illustrate with $p = 2$. Choose a level 0 path $C$.

Projecting onto these coordinates is a surjective homomorphism $\mathbf{W}_{\mathbb{Z}_p^2}(k) \rightarrow \mathbf{W}(k)$. The image is a domain, so the kernel is a prime ideal $\mathfrak{p}_C$. Each path along the bottom gives a different prime ideal in $\mathbf{W}_{\mathbb{Z}_p^2}(k)$. 
Prime Ideals in $W_{\mathbb{Z}_p^2}(k)$

There is a natural family of prime ideals in $W_{\mathbb{Z}_p^2}(k)$. In the diagram, we illustrate with $p = 2$. Choose a level 0 path $C$. Projecting onto these coordinates is a surjective homomorphism $W_{\mathbb{Z}_p^2}(k) \to W(k)$. The image is a domain, so the kernel is a prime ideal $p_C$. Each path along the bottom gives a different prime ideal in $W_{\mathbb{Z}_p^2}(k)$. Are these all the prime ideals (besides the maximal ideal)?
There is a natural family of prime ideals in $\mathbb{W}_{\mathbb{Z}_p^2}(k)$. In the diagram, we illustrate with $p=2$. Choose a level 0 path $C$.

The intersection of the prime ideals described so far consists of the vectors whose coordinates are zero for any $\mathbb{Z}_p^2$-set in level 0. Since the only nilpotent in $\mathbb{W}_{\mathbb{Z}_p^2}(k)$ is 0, the intersection of all prime ideals in $\mathbb{W}_{\mathbb{Z}_p^2}(k)$ is $\{0\}$. There must be more prime ideals.
Prime Ideals in $\mathcal{W}_{\mathbb{Z}_p^2}(k)$

There is a natural family of prime ideals in $\mathcal{W}_{\mathbb{Z}_p^2}(k)$. In the diagram, we illustrate with $p = 2$. Choose a level 0 path $C$. The intersection of the prime ideals described so far consists of the vectors whose coordinates are zero for any $\mathbb{Z}_p^2$-set in level 0. Since the only nilpotent in $\mathcal{W}_{\mathbb{Z}_p^2}(k)$ is $0$, the intersection of all prime ideals in $\mathcal{W}_{\mathbb{Z}_p^2}(k)$ is $\{0\}$. The intersection of the prime ideals described so far consists of the vectors whose coordinates are zero for any $\mathbb{Z}_p^2$-set in level 0. Since the only nilpotent in $\mathcal{W}_{\mathbb{Z}_p^2}(k)$ is $0$, the intersection of all prime ideals in $\mathcal{W}_{\mathbb{Z}_p^2}(k)$ is $\{0\}$.
There is a natural family of prime ideals in $W_{\mathbb{Z}_p^2}(k)$. In the diagram, we illustrate with $p = 2$. Choose a level 0 path.

The intersection of the prime ideals described so far consists of the vectors whose coordinates are zero for any $\mathbb{Z}_p^2$-set in level 0. Since the only nilpotent in $W_{\mathbb{Z}_p^2}(k)$ is 0, the intersection of all prime ideals in $W_{\mathbb{Z}_p^2}(k)$ is $\{0\}$. There must be more prime ideals.
More about primes

Set \( J_1 = \bigcap_C p_C \) the intersection of all the primes arising from projecting along rooted chains \( C \).
More about primes

Set $J_1 = \bigcap_{C} p_C$ the intersection of all the primes arising from projecting along rooted chains $C$. So $J_1 \neq 0$, but taking the quotient $W_G(k)/J_1$ restricts focus to the bottom portion of the diagram.
More about primes

Set \( J_1 = \bigcap_C p_C \) the intersection of all the primes arising from projecting along rooted chains \( C \). So \( J_1 \neq 0 \), but taking the quotient \( \mathcal{W}_G(k)/J_1 \) restricts focus to the bottom portion of the diagram. In this quotient, are there more prime ideals?
Primes in $W_{\mathbb{Z}_p^2}(k)/J_1$

One may think of $W_{\mathbb{Z}_p^2}(k)/J_1$ as the Witt vectors associated to the tree:

![Tree Diagram]
Primes in $W_{\mathbb{Z}_p^2}(k)/J_1$

One may think of $W_{\mathbb{Z}_p^2}(k)/J_1$ as the Witt vectors associated to the tree:

This ring $W_{\mathbb{Z}_p^2}(k)/J_1$ is still not coherent (and therefore not noetherian) and is still reduced. The proofs over $W_{\mathbb{Z}_p^2}(k)$ go through on the quotient.
Primes in $W_{\mathbb{Z}_p^2}(k)/J_1$

This viewpoint allows one to embed $W_{\mathbb{Z}_p^2}(k)/J_1$ into a more 'familiar' ring.
Primes in $W_{\mathbb{Z}_p^2}(k)/J_1$

This viewpoint allows one to embed $W_{\mathbb{Z}_p^2}(k)/J_1$ into a more 'familiar' ring. The boundary of this tree, $T$, i.e., the space of all rooted paths is known to be $\mathbb{P}^1(\mathbb{Q}_p)$. 

![Diagram showing the boundary of the tree $T$]
This viewpoint allows one to embed $W_{Z_p^2}(k)/J_1$ into a more 'familiar' ring. The boundary of this tree, $T$, i.e., the space of all rooted paths is known to be $\mathbb{P}^1(\mathbb{Q}_p)$.

From a Witt vector $a \in W_{Z_p^2}(k)/J_1$, we can associate a function on $\partial T$ with values in $W(k)$. One can check that this gives an injective ring homomorphism $W_{Z_p^2}(k)/J_1$ into $\text{Fun}(\mathbb{P}^1(\mathbb{Q}_p), W(k))$. 
Primes in $W_{Z_p}^2(k)/J_1$

Moreover, we have a good guess at the image, essentially Lipschitz functions with a mild technical criteria.
Moreover, we have a good guess at the image, essentially Lipschitz functions with a mild technical criteria.

So, contracting along this homomorphism gives new primes. Contracting the maximal ideals consisting of functions vanishing at a point recovers the primes \( p_C \) we found before.
Moreover, we have a good guess at the image, essentially Lipschitz functions with a mild technical criteria.

So, contracting along this homomorphism gives new primes. Contracting the maximal ideals consisting of functions vanishing at a point recovers the primes $p_C$ we found before.

And some we didn’t, like using common ultrafilter constructions.
Nonreduced Examples of $W_G(k)$

When $G$ is an infinite pro-$p$ group and $k$ is a field of characteristic $p$, $W_G(k)$ might be nonreduced.

**Theorem (M)**

- If $G = \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}_p$, then $W_G(k)$ is nonreduced for all $k$ of characteristic $p$ when $p \neq 2$.
- When $G = D_{2\infty} = \lim_{\leftarrow} D_{2n} = \mathbb{Z}_2 \rtimes \{\pm 1\}$, $W_G(k)$ is nonreduced if $k$ has characteristic 2.
Nonreduced Examples of $\mathcal{W}_G(k)$

When $G$ is an infinite pro-$p$ group and $k$ is a field of characteristic $p$, $\mathcal{W}_G(k)$ might be nonreduced.

**Theorem (M)**

- If $G = \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}_p$, then $\mathcal{W}_G(k)$ is nonreduced for all $k$ of characteristic $p$ when $p \neq 2$.

- When $G = D_{2\infty} = \lim_{\leftarrow} D_{2n} = \mathbb{Z}_2 \rtimes \{\pm 1\}$, $\mathcal{W}_G(k)$ is nonreduced if $k$ has characteristic 2.

The proofs of both cases use recursive computations to show an explicit nonzero Witt vector in $\mathcal{W}_G(\mathbb{F}_p) \subset \mathcal{W}_G(k)$ has square 0.
Nonreduced Examples of $W_G(k)$

When $G$ is an infinite pro-$p$ group and $k$ is a field of characteristic $p$, $W_G(k)$ might be nonreduced.

**Theorem (M)**

- If $G = \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}_p$, then $W_G(k)$ is nonreduced for all $k$ of characteristic $p$ when $p \neq 2$.
- When $G = D_2^\infty = \varprojlim D_{2^n} = \mathbb{Z}_2 \rtimes \{\pm 1\}$, $W_G(k)$ is nonreduced if $k$ has characteristic 2.

The proofs of both cases use recursive computations to show an explicit nonzero Witt vector in $W_G(F_p) \subset W_G(k)$ has square 0.

The argument in the first case uses $p \neq 2$ in an important way, although the ring may be nonreduced when $p = 2$. 
Nonreduced Examples of $\mathbf{W}_G(k)$

When $G$ is an infinite pro-$p$ group and $k$ is a field of characteristic $p$, $\mathbf{W}_G(k)$ might be nonreduced.

**Theorem (M)**

- If $G = \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}_p$, then $\mathbf{W}_G(k)$ is nonreduced for all $k$ of characteristic $p$ when $p \neq 2$.
- When $G = D_{2\infty} = \lim_\leftarrow D_{2n} = \mathbb{Z}_2 \rtimes \{\pm 1\}$, $\mathbf{W}_G(k)$ is nonreduced if $k$ has characteristic $2$.

The proofs of both cases use recursive computations to show an explicit nonzero Witt vector in $\mathbf{W}_G(F_p) \subset \mathbf{W}_G(k)$ has square $0$.

The argument in the first case uses $p \neq 2$ in an important way, although the ring may be nonreduced when $p = 2$.

The ring $\mathbf{W}_{D_{2\infty}}(k)$ when $k$ has characteristic $2$ can also be shown to be not coherent.
Thank you.
Questions?


L.E. Miller, “A Witt-Burnside ring attached to a pro-dihedral group”, submitted.

